Inferring neuronal network connectivity from spike data: A temporal data mining approach
نویسندگان
چکیده
Understanding the functioning of a neural system in terms of its underlying circuitry is an important problem in neuroscience. Recent developments in electrophysiology and imaging allow one to simultaneously record activities of hundreds of neurons. Inferring the underlying neuronal connectivity patterns from such multi-neuronal spike train data streams is a challenging statistical and computational problem. This task involves finding significant temporal patterns from vast amounts of symbolic time series data. In this paper we show that the frequent episode mining methods from the field of temporal data mining can be very useful in this context. In the frequent episode discovery framework, the data is viewed as a sequence of events, each of which is characterized by an event type and its time of occurrence and episodes are certain types of temporal patterns in such data. Here we show that, using the set of discovered frequent episodes from multi-neuronal data, one can infer different types of connectivity patterns in the neural system that generated it. For this purpose, we introduce the notion of mining for frequent episodes under certain temporal constraints; the structure of these temporal constraints is motivated by the application. We present algorithms for discovering serial and parallel episodes under these temporal constraints. Through extensive simulation studies we demonstrate that these methods are useful for unearthing patterns of neuronal network connectivity.
منابع مشابه
Inferring Neuronal Network Connectivity using Time-constrained Episodes
Discovering frequent episodes in event sequences is an interesting data mining task. In this paper, we argue that this framework is very effective for analyzing multi-neuronal spike train data. Analyzing spike train data is an important problem in neuroscience though there are no data mining approaches reported for this. Motivated by this application, we introduce different temporal constraints...
متن کاملStatistical Inference of Functional Connectivity in Neuronal Networks using Frequent Episodes
Identifying the spatio-temporal network structure of brain activity from multi-neuronal data streams is one of the biggest challenges in neuroscience. Repeating patterns of precisely timed activity across a group of neurons is potentially indicative of a microcircuit in the underlying neural tissue. Frequent episode discovery, a temporal data mining framework, has recently been shown to be a co...
متن کاملInference of neuronal network spike dynamics and topology from calcium imaging data
Two-photon calcium imaging enables functional analysis of neuronal circuits by inferring action potential (AP) occurrence ("spike trains") from cellular fluorescence signals. It remains unclear how experimental parameters such as signal-to-noise ratio (SNR) and acquisition rate affect spike inference and whether additional information about network structure can be extracted. Here we present a ...
متن کاملA Bayesian approach for inferring neuronal connectivity from calcium fluorescent imaging data
Deducing the structure of neural circuits is one of the central problems of modern neuroscience. Recently-introduced calcium fluorescent imaging methods permit experimentalists to observe network activity in large populations of neurons, but these techniques provide only indirect observations of neural spike trains, with limited time resolution and signal quality. In this work we present a Baye...
متن کاملTemporal Data Mining for Neuroscience
Today, multielectrode arrays (MEAs) capture neuronal spike streams in real time, thus providing dynamic perspectives into brain function. Mining such spike streams from these MEAs is critical toward understanding the firing patterns of neurons and gaining insight into the underlying cellular activity. However, the acquisition rate of neuronal data places a tremendous computational burden on the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Scientific Programming
دوره 16 شماره
صفحات -
تاریخ انتشار 2008